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The flow-induced surface instabilities of Kramer-type compliant surfaces are in- 
vestigated by a variety of theoretical approaches. This class of instability includes all 
those modes of instability for which the mechanism of generation involves essentially 
inviscid processes. The results should be applicable to all compliant surfaces that 
could be modelled theoretically by a thin elastic plate, with or without applied 
longitudinal tension, supported on a springy elastic foundation, with or without a 
viscous fluid substrate; material damping is also taken into account through the 
viscoelastic properties of the solid constituents of the coatings. 

The simple case of a potential main flow is studied first. The eigenmodes for this 
case are subjected to an energy analysis following the methods of Landahl (1962). 
Instabilities that grow both in space and time are then considered, and absolute and 
convective instabilities identified and analysed. 

The effects of irreversible processes on the flow-induced surface instabilities are 
investigated. The shear flow in the boundary layer gives rise to a fluctuating pressure 
component which is out of phase with the surface motion. This leads to an irreversible 
transfer of energy from the main stream to the compliant surface. This mechanism 
is studied in detail and is shown to be responsible for travelling-wave flutter. Simple 
results are obtained for the critical velocity, wavenumber and stability boundaries. 
These last are shown to be in good agreement with the results obtained by the 
numerical integration of the Orr-Sommerfeld equation. An analysis of the effects of 
a viscous fluid substrate and of material damping is then carried out. The simpler 
inviscid theory is shown to predict values of the maximum growth rate which are, 
again, in good agreement with the results obtained by the numerical integration of 
the Orr-Sommerfeld equation provided that the instability is fairly weak. 

Compliant surfaces of finite length are analysed in the limit as wave-length tends 
to zero. In this way the static-divergence instability is predicted. Simple formulae 
for critical velocity and wavenumber are derived. These are in exact agreement with 
the results of the simpler infinite-length theory. But, whereas a substantial level of 
damping is required for the instability on a surface of infinite length, static divergence 
grows fastest in the absence of damping on a surface of finite length. 

1. Introduction 
The quest for drag reduction and turbulence suppression may be the practical 

motivation for the current research on compliant surfaces, but it is the profusion of 
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potential modes of instability that makes the hydrodynamic stability of such surfaces 
a challenging and interesting problem. Of course, the identification and prediction 
of these instabilities should also be of considerable practical concern if substantial 
transition delays or turbulence suppression are ever to be achieved with real 
compliant surfaces. In fact, it seems quite likely that the occurrence of unexpected 
and unwanted instabilities has been an important factor in frustrating past attempts 
to achieve repeatable drag reductions. 

Why, then, is the flow over compliant surfaces susceptible to so many different 
types of instability? The simple answer is that the dynamic system in question 
consists of two coupled wave-bearing media - the flowing fluid and solid flexible wall. 
In this respect the situation is similar to water waves. The structure of compliant 
surfaces is considerably more complex than water, however, which greatly increases 
the chances of additional modes of instability. The complexity of the problem can 
be appreciated by studying the simple model problem of potential flow over a 
compliant surface consisting of a plate or tensioned membrane supported on a 
continuous elastic foundation. In this case, it can be readily shown that three distinct 
types of travelling wave may occur. Each of these responds differently to the presence 
of a boundary layer and to viscous and material damping. Moreover, the possibility 
of modal interaction and coalescence with the Tollmien-Schlichting waves also exists. 

The profusion of instabilities was fully appreciated in the earliest theoretical 
analyses by Benjamin (1960) and Landahl (1962) which closely followed publication 
by Kramer (1960) of his pioneering experimental work on compliant coatings. 
Originally, Benjamin (1960) identified three types of instability. The first type, 
Tollmien-Schlichting waves, are similar to those found in flows over rigid walls, but 
modified by surface flexibility. Viscous effects play an essential role in their 
generation. The second type comprise surface waves travelling at speeds close to the 
free wave speed of the flexible surface. The mechanism of generation of this type of 
wave was studied earlier by Benjamin (1959) and Miles (1957). A shear layer is 
necessary for the waves to grow but, apart from that, viscosity does not play an 
essential role. The third type was termed a Kelvin-Helmholtz instability. These 
instabilities can exist with inviscid and even potential flow, as shown by Miles 
(19593), for example. 

Later, Landahl (1962) and Benjamin (1963) showed that the dynamic system 
comprising an inviscid shear layer flowing over a compliant surface could support 
three distinct classes of wave rather than two. These could be classified according 
to whether their existence led to a decrease, increase or to no change in the total energy 
of the system. Class-A waves are associated with a fall in energy and are destabilized 
by damping; in this respect Tollmien-Schlichting waves can be considered as 
belonging to this category. Class-B waves are associated with a rise in energy and 
are stabilized by damping. These are really the same as the second type of wave 
originally identified by Benjamin (1960). Finally, Class C are associated with no 
change in energy level and are unaffected by damping. The Kelvin-Helmholtz 
instability belongs to this class. 

In  Part 1 {Carpenter & Garrad (1985) hereinafter referred to as I} of the present 
work, Benjamin and Landahl’s classification of instabilities was not followed for 
various reasons. Instead, two broad categories of instabilities were defined. The first 
was termed Tollmien-Schlichting instabilities (TSI) ; and the second category was 
called flow-induced surface instabilities (FISI), consisting of all those instabilities 
which could exist if the viscous boundary layer were replaced by an inviscid shear 
layer. It was recognized that to some extent the distinction is rather artificial, 
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FIGURE 1. A schematic illustration of the theoretical model for a compliant surface. 

especially as under certain circumstances the TSI can interact and coalesce with one 
of the FISI modes. However, it has proved very useful in practice to develop a 
separate inviscid treatment for the FISI associated with Kramer-type compliant 
surfaces. This term is used, as in I, for compliant coatings which can be modelled 
by an elastic plate or tensioned membrane supported on a continuous springy elastic 
foundation with or without a viscous fluid substrate (see figure 1) .  This treatment 
is the main subject of the present paper; some preliminary results have already 
appeared in Carpenter & Garrad (1982) and Carpenter (1984a, b). Part 1 (I) dealt with 
the TSI and Part 3 will consider the interaction and coalescence of the TSI and PIS1 
modes; a preliminary version of this latter work was given by Carpenter, Gaster & 
Willis (1983). 

For a potential flow over a non-dissipative Kramer-type surface it will be shown 
below that there are three classes of waves, as found by Landahl and Benjamin. 
However, when a more realistic model is considered, it appears that only the Class-B 
wave - here renamed travelling-wave flutter (TWF) - occurs as a travelling wave. 
The Class-A wave gives way to another type of instability, namely static divergence. 
As its name suggests this instability does not take the form of a travelling wave but 
rather exists as a periodic series of humps and valleys. Divergence does not fit readily 
into Benjamin and Landahl’s classification scheme. Thus, four types of instability 
appear to be possible in a realistic model of flow over Kramer-type compliant surfaces. 
These comprise the TSI, TWF and static divergence; and the combined instability 
formed by the coalescence of the TSI and TWF. 

A variety of theoretical approaches have been applied to FISI on compliant 
surfaces. These can be sorted into five loose categories, namely: (i) the hydro/amo- 
elastic approach (e.g. Landahl 1962; Benjamin 1963; Dowel1 1971, 1975; Kornecki 
1978; Carpenter & Garrad 1982; Garrad & Carpenter 1982a, b) ;  (ii) use of the 
negative-energy concept (e.g. Landahl 1962, 1964; Benjamin 1963) ; (iii) analogies 
with water waves (e.g. Benjamin 1960, 1963, 1964); (iv) numerical solution of the 
Orr-Sommerfeld equation (e.g. Carpenter & Garrad 1985; Carpenter et al. 1983; 
Carpenter 1984~) ;  (v) the causal approach (e.g. Brazier-Smith & Scott 1984; Atkins 
1982). Each of these various approaches has elucidated some aspect of this complex 
problem but the overall picture is, perhaps, somewhat confusing. It is the main aim 
of the present paper to bring together all the previous approaches in order to present 
a consistent overall account of the FISI on Kramer-type compliant surfaces. 
Accordingly, rather than reviewing the relevant literature at this juncture, it is more 
convenient to discuss the work of previous investigators a t  appropriate points in the 
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main text. Two very recent reviews on the subject have been given by Gad-el-Hak 
(19863) and Dowel1 (1985). 

The present paper is organized as follows. Section 2 contains an analysis of the 
instabilities for a potential flow over a compliant surface. It has three subsections: in 
$2.1 the basic theory is developed; and the energy analysis of the instabilities due 
to Landahl(l962) and Benjamin (1963) is briefly described and discussed in 52.2. The 
concepts of convective and absolute temporal instabilities are investigated in $2.3. 
A fairly detailed comparison is made between the results of the present theory and 
those of the causal theory due to Brazier-Smith & Scott (1984). The effects of 
irreversible processes on the FISI are analysed in $3. Boundary-layer effects are 
considered in $3.1 and the effects of viscous and viscoelastic damping in $3.2. Section 
4 is devoted to the treatment of static divergence. The analysis for a surface of finite 
length is presented for the limiting case of wavelength tending to zero. 

The overall conclusions are given in $5.  In addition, the various theoretical results 
are applied to the original Kramer coatings with the same objective as I,  namely to 
ascertain whether Kramer’s experimental observations were consistent with his view 
that transition delay was responsible for the drag reductions achieved in his tests. 
The Kramer coatings are also chosen as a suitable example to illustrate the theory 
in the main body of the paper. It should be emphasized, however, that Kramer’s 
experiments are not regarded as ‘ bench-mark ’ tests and the comparison between 
theoretical predictions and his experimental observations are not considered to 
constitute, in any sense, a verification of the theory. 

2. Potential main flow 
2.1. Basic theory 

A potential main flow over a non-dissipative compliant surface, comprising a thin 
plate or a tensioned membrane, supported on an elastic foundation, represents the 
simplest model of flow over a compliant surface. Many important features, which are 
also exhibited by more realistic models, can be readily demonstrated with this simple 
system. The results need to be interpreted with great care, however, because this 
simple system turns out to be an almost pathological approximation in that i t  appears 
to give the incorrect result as regards stability under virtually any limiting process. 
For example, i t  will be shown below that it does not agree with the results obtained 
when internal damping tends to zero. I n  $3.1 it will be shown that the stability 
predictions do not agree with those obtained in the limit as boundary-layer thickness 
tends to zero. Finally, it is found in $4 that  for a surface of finite length in the limit 
as instability wavelength tends to zero the results obtained are once again a t  variance 
with those obtained by the simple model. 

For a two-dimensional travelling wave the surface displacement takes the form 

w = w,, exp{ia(x-cct)}, (2.1) 

where a is the wavenumber, c = c, + ic, is the complex wave speed, x is the streamwise 
coordinate and t is time. The surface motion is governed by the following equation 
(see I ) :  

where pm and b are respectively the density and thickness of the plate, d is a damping 
coefficient, B and Tare respectively the flexural rigidity of and tension per unit width 
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applied to the plate, Sp, and ape are the perturbations in dynamic pressure in the 
substrate fluid and main stream respectively, K ,  is an equivalent spring stiffness 
incorporating the effects of perturbations to hydrostatic pressure difference, given 

K E  = K-dpe-Ps),  (2.3) by 

where K is the spring stiffness, g is the acceleration due to gravity, and pe and p, are 
respectively the densities of the mainstream and substrate fluids. 

In the present section the main flow will be taken to be potential and the substrate 
fluid assumed to be absent, so that 

Sp, = -pea(U,-c)2w, Sp, = 0, (2.4) 

where Uw is the free-stream velocity. If (2.1) and (2.4) are substituted into (2.2) the 
following non-dimensional characteristic equation (dispersion relation) for complex 
wave speed can be derived: 

az-C;+C,(1-C)2+iCDC = 0, (2.5) 

where C = Z, + iCi and Co are the complex wave speed and free wave speed respectively 
divided by U,, C, = p , / (bp ,a )  and C, = d/(ap, bU,); 

(2 .6a)  

where (2.7) 

When damping is absent (2.5) is a quadratic in terms of C, the roots of which are 
niven bv 

where 

The relationship between wavenumber and complex wave speed determined by 
(2 .8)  is illustrated in figure 2 where the results correspond to Gamer’s coating C (the 
one with the best performance - see I) at a speed of 25 m/s. It can be seen in figure 2 
that for low wavenumbers there are two distinct families of wave. Branch FH 
corresponds to a fairly fast wave which travels downstream. The other branch 
corresponds to an upstream-travelling wave between C and D and a relatively slow 
downstream-travelling wave between D and F. At intermediate wavenumbers 
between F and G the two families of wave coalesce, only to bifurcate again a t  G. When 
damping is absent the system is only unstable for branch FG, as can be seen from 
the curve for Ci. Outside this limited range of wavenumbers the system is neutrally 
stable; Ci is not plotted in figure 2 where it is zero. Thus, in total, there are three types 
of wave - the fast wave corresponding to FH and BG, the slow or upstream-travelling 
wave corresponding to FDC and AG, and the unstable wave corresponding to FG 
formed by the coalescence of the other two types. 

When damping is present the roots of (2.5) are given by 
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FIGURE 2. Non-dimensional wavenumber vs. non-dimensional wave speed. CE = 0.109, C; = 0, 
C z  = 0.327. -, E r ;  ----, C i :  CY, = 0; . . . . . . .. . , Ei: CY, = 0.01. 

where 

and CZ, = d/p,  u,. 
Equation (2.9) is similar to, but not identical with, results given by Landahl (1962) 
and Kornecki (1978). From (2.9) it can be seen that the onset of instability occurs 
when 24 = C,  CZ,/Co. By examining the real part of C in (2.9) it can be seen that this 
instability condition corresponds to  C = 0. Thus points D and A (rather than F and 
G )  in figure 2 mark the onset of instability whenever damping, no matter how light, 
is present. The unstable branch of Ci is plotted in figure 2 for a value of CZ, = 0.01 ; 
c, is virtually unchanged from its value for CZ, = 0. - 

For a fixed wavenumber the velocity for which C = 0 is given by Co = C,t, or 

(2.10) 

so differentiating the right-hand side of (2.10) with respect to a and setting the result 
equal to zero leads to the critical wavenumber, which is given by 

(!P+ 12BK,)i- 
ad=( 6B 

(2.11) 

For the special cases of the untensioned plate and the tensioned membrane (2.11) 
reduces to 

(2.12) 

respectively. The corresponding critical velocity is found by substituting (2.11) into 
(2.10). I n  the two special cases, substitution of (2.12) into (2.10) gives 

(2.13) 

respectively 
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FIGURE 3. Complex wave speed vs. free-stream speed for a =aa-Kramer's best caw. 
Cg = 68.13/Pm, C; = 0, C z  = 204.4/Pw. -, cr; -- , ci: Cz  = 0 ;  -------, ci: Cg = 0.25/Uw.  

In  (2.11)-(2.13) the critical wavenumbers and velocities have been denoted by the 
subscript d. This is because the instability is usually identified as a divergence. 
Actually, as can be seen from figure 2, the theory indicates that the instability is a 
slowly travelling wave and not static divergence. It will be shown in 93 that when 
boundary-layer effects are taken into account this slowly travelling wave is stabilized 
for low levels of damping. However, in 94 it will be shown that for surfaces of finite 
length a true divergence-type instability does occur, but the critical velocity and 
wavenumber are still given by (2.13) and (2.11) respectively, in the limit as 
wavelength tends to zero. 

The onset of instability is probably best illustrated by plotting the complex wave 
speed c against the free-stream velocity U ,  as in figure 3. In this case the wavenumber 
is given the value determined by (2.12) and the values of c obtained from (2.8) or 
(2.9). The results presented in figure 3 are for the mechanical properties, i.e. values 
of B, T, K ,  etc. which correspond to the Kramer coating with the best performance 
(i.e. elastic modulus, E = 0.5 N/mm2, see I). Since in practice the mechanical 
properties do not vary with U,, the non-dimensional coefficients C z ,  C;F, and C, are 
first evaluated at a reference velocity of 25 m/s and then multiplied by the factors 
(25/ or (25/ 27,) as appropriate. Thus the dispersion relation illustrated in figure 
2 corresponds to a free-stream speed of 25 m/s in figure 3. 

The features displayed in figure 3 reflect those that appear in figure 2. For example, 

/ ; 
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in the absence of damping, there are two separate neutrally stable waves for U ,  < U, 
-the so-called flutter speed - corresponding to ADF and BTF in figure 3. It can easily 
be shown from (2.8) that  when a = ad 

u, = U,( 1 + CJi. (2.14) 

For U ,  > U, the two waves coalesce and a severe flutter-type instability sets in, 
corresponding to FG and EH in figure 3. When damping is present instabilityt first 
occurs when U ,  reaches Ud which. again, mirrors what is shown in the dispersion 
relation of figure 2. 

The sudden reduction in critical velocity from U, to U ,  when damping is introduced 
was once regarded as rather paradoxical by aeroelasticians. The phenomenon was first 
fully explained by Landahl(l962). He showed that in a condition of neutral stability 
the destabilizing hydrodynamic and inertial forces are exactly balanced by the 
restoring mechanical forces in the surface. The main effect of damping is to  slow down 
the wave slightly. This slight reduction in phase speed will leave the restorative 
mechanical force unchanged but the destabilizing hydrodynamic and inertial forces 
will be slightly changed. For the wave regime denoted by AD in figure 3 the 
destabilizing forces are reduced so that damping is stabilizing. On the other hand for 
regimes D F  and BF the destabilizing forces are increased so that damping is 
destabilizing. 

The explanation summarized above is expressed in the simplest possible terms. 
There is, however, a more fundamental approach to the question involving an 
analysis of the changes in energy associated with a particular wave. This approach 
also originated with Landahl (1962), and is considered in the next section. 

2.2. An energy analysis of the waves 

Landahl(l962) and Benjamin (1963) showed how the effects of irreversible processes 
on the stability of the PIS1 on compliant surfaces could be predicted by means of 
a careful analysis of the change in total energy level associated with the wave in 
question. Moreover, with this approach i t  is only necessary to know the solution to 
the corresponding non-dissipative problem. Thus, by use of the simple solution (2.8), 
an energy analysis can predict the effects on stability of viscous and viscoelastic 
damping and of the boundary layer. The analysis given below is based on that given 
by Benjamin who generalized and extended Landahl’s original analysis. 

When U* is real the solutions (2.8) correspond to  neutrally stable waves which 
therefore cannot grow in amplitude. Imagine. however, that  some unspecified 
external agency exists whereby the waves are made to grow gradually until a steady 
state is reached and subsequently maintained. The key question is: How much energy 
must be expended by this unspecified external agency to bring about this state of 
affairs ? 

To answer this question Landahl and Benjamin calculated the kinetic energy z k  

and the potential (strain) energy Ep of the compliant surface in the final steady state. 
Both types of energy are averaged over a wavelength. But zk+zp is not the energy 
which must be supplied by the external agency, because energy is extracted from the 
main stream by the work done on the surface by the hydrodynamic pressure forces 
during the development of the wave. Accordingly, making the assumption of an 
unsteady potential flow, the total work W done by hydrodynamic pressure on the 
surface during the development of the wave was evaluated and averaged over a 

t In figure 3 c, is only plotted when it is positive, i.e. for an instability 
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wavelength. Thus the net energy required from the external agency in order to create 
a given wave is given by 

EA = Ep+Ek-TV. (2.15) 

Benjamin called this quantity the activation energy, and by use of the simple solution 
(2.8) showed that 

EA cc U*( U*f U,). (2.16) 

Landahl and Benjamin defined three main classes of wave, namely those for which 

(i) EA < 0:  Class A, 

(ii) E ,  > 0:  Class B, 

(iii) EA = 0:  Class C. 

At first sight, perhaps, it  may seem rather paradoxical to propose the existence 
of waves having negative activation energy. This would imply that the hypothetical 
external agency, conjured up for the purposes of the above analysis, would actually 
have to remove energy from the system to create an instability of this class. Such a 
wave would clearly exist, however, if U ,  > U* in (2.16) when the minus sign is taken; 
this condition is satisfied for the relatively slow downstream-travelling wave 
corresponding to DF and GA in figure 2 and to DF in figure 3. For this class of wave 
any dissipative process would be destabilizing. The physical explanation of the 
destabilization lies with the slight slowing of the wave in response to the dissipation 
of its energy (see $2.1). 

Class-B waves are a more straightforward case. The external agency must now 
provide energy to create an instability, so dissipative processes have a stabilizing 
effect. In this case an irreversible energy transfer from the main stream to the 
compliant surface would have a destabilizing effect. Miles (1957) and Benjamin (1959, 
1963) have shown that the presence of a boundary layer leads to such an irreversible 
energy transfer (see also $3.1). The boundary layer would have the opposite effect, 
i.e. stabilizing, on the Class-A waves. It can be seen from (2.16) that EA > 0 when 
the plus sign is taken and U* 9 0. These conditions are satisfied for the relatively 
fast downstream-travelling wave corresponding to FH and GB in figure 2 and BF 
in figure 3. EA > 0 is also satisfied when U* > U ,  and the minus sign is taken in (2.16). 
These conditions are fulfilled for the upstream-travelling wave corresponding to CD 
in figure 2 and AD in figure 3. 

Class-C instabilities are the only type that can exist in a conservative system. They 
occur as a coalescence of a Class-A and Class-B instability. From (2.16) it can be seen 
that the condition for their existence is U* = 0, which corresponds to FG in figure 2 
and figure 3. For these instabilities dissipative effects will reduce the growth rate 
slightly but will not change the stability boundaries. 

The simple analysis leading to (2.16) allows one to predict the effects of various 
irreversible processes on the FISI. For instance, since the relatively slow travelling 
wave changes from Class B to Class A when U ,  reaches ud, it follows that for 
U ,  > u d  any dissipative process will generate an instability. Thus, the effects of a 
viscous fluid substrate or material damping are identical in this respect. On the other 
hand, for the relatively fast wave instability will set in as soon as there is irreversible 
energy transfer from the mainstream. It is shown in $3.1 that this occurs when U ,  
reaches co. Finally, the analysis suggests that the coexistence of Class-A and Class-B 
waves brings the possibility of a relatively strong Class-C instability. This point is 
illustrated in a straightforward way by the present analysis. However, as Benjamin 
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(1960,1963) and Landahl(l962) found, the TSI also display the attributes of a Class-A 
instability; at least they do for most of the unstable region of the (a, Re)-plane (see 
figure 13 of I, for example). Consequently, a Class-C instability could be expected to 
occur as a result of a coalescence of the TSI and the fast TWF (Class-B) instability. 
This type of Class-C instability has been found in I and is further investigated in 
Carpenter et al. (1983) and in Part 3 of the present paper. The energy analysis predicts 
the existence of such an instability but apparently gives no information on the 
stability boundaries in this instance. 

The type of energy analysis summarized above is presented in a more general form 
by Benjamin (1963) and other applications are considered in Landahl (1964). Very 
similar principles were independently developed by Briggs (1964) and others for the 
treatment of waves in plasmas. Having initially learnt of the concepts through their 
applications in plasma physics, Cairns (1979) applied them to hydrodynamic 
instabilities in parallel flows. The Landahl-Benjamin-type analysis has also been 
applied by Duncan, Waxman & Tulin (1985) to FISI on compliant coatings 
comprising a homogeneous layer of viscoelastic material. The results are similar to 
those for Kramer-type coatings. 

2.3. Convective and absolute temporal instabilities 
In the analysis presented above no consideration has been given to the form of the 
initial disturbance and to how it grows in an unstable flow. Why should such 
considerations matter 1 The short answer is that any realistic model of an initial 
disturbance would give rise to some sort of wavetrain or packet containing a range 
of frequencies and wavenumbers. Owing to the dispersive nature of the instabilities 
the development of such waveforms would be characterized by the group velocity 
rather than the phase velocity. 

In  the classic experimental investigations of boundary-layer instability by Schu- 
bauer & Skramstadt (1948) a vibrating ribbon was used to excite waves; so the initial 
disturbance was well defined. Gaster (1965a, b) studied this case theoretically by 
considering the waveform generated by the ribbon to be a superposition of Fourier 
eigenmodes of the form 

exp {i(dz-p’Blt)}, (2.17) 

where u‘ and p’ are both complex. He showed that far from the ribbon the disturbance 
develops into a spatially growing wave with p’ real and equal to the vibrational 
frequency of the ribbon. This type of instability is quite different from the purely 
temporal instability represented by (2.1). 

The analysis for instabilities of form (2.17) is considerably more involved than for 
purely temporal instabilities such as (2.1 ). Consequently, it would be advantageous 
in the present context if the properties of spatially growing waves could be obtained 
from an analysis of purely temporal instabilities. Clearly, the actual stability 
boundaries would be the same for both types of instability. Furthermore, Gaster 
(1962, 19653) showed that provided the growth rate is small the spatial and temporal 
eigenvalues are related by 

a: =a ,  a;=-%, p’ =ac,, (2.18) 
cg 

where 
a 

cg = - (ac,) 
aa 

(2.19) 
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is the group velocity. These relationships seem to be a reasonable approximation for 
boundary layers on rigid flat plates, so it is tempting to assume that they can be 
applied to compliant surfaces also. There remains, however, the possibility noted by 
Gaster (1968) of absolute, or true temporal, instabilities as distinct from the 
convectivet, or spatially growing, waves found in boundary layers on rigid flat plates. 
For absolute instabilities the group velocity equals zero, so any initial disturbance 
would grow exponentially with time without being convected from the region of 
initial excitation. Thus, this type of instability truly grows in time and clearly has 
a much more profound effect on the flow than the convective type. 

The initial disturbances involved in natural transition are due to such sources as 
free-stream turbulence, acoustic excitation and surface roughness. These are more 
difficult to represent analytically than the steady sinusoidal input of a vibrating 
ribbon. However, the pulse input containing, as it does, all frequencies and wave- 
numbers, could be regarded as reasonably representative of some real disturbances. 
This case was investigated by Gaster (1968) with free-shear layers in mind, but 
actually his treatment is fairly general. And very recently Brazier-Smith & Scott 
(1984) (hereinafter referred to as B-S & S) have investigated the propagation over 
a compliant surface of waves generated by a pulse input. 

The relatively simple case of the stability of a potential flow over a thin plate was 
studied in depth by B-S & S (see also Atkins 1982). The effects of an elastic foundation 
were not included (i.e. K ,  = T = 0 in (2.2)); nor were any dissipative effects 
considered (i.e. d = 0 in (2.2)). Their work is based on techniques developed by Briggs 
(1964) and Melcher (1981) in plasma physics. In  essence, the principle of causality 
is invoked, i.e. the system is assumed to remain undisturbed until some initial time 
when an excitation is suddenly applied; the system response after a long lapse of time 
is then determined. 

The root-locus technique used by B-S & S appears to be fairly involved even for 
the simple test case considered. It would probably be a very difficult undertaking 
to extend the method to more complex compliant surfaces, with dissipative$ and 
boundary-layer effects also included. Consequently, it should be of considerable 
advantage if the relative simple analysis presented in 52.1 could be used to obtain 
the main results of the analysis of B-S & S. To show that this is feasible the simple 
case of the thin plate is investigated and the results of the two approaches compared. 
The effects of damping are then considered. Finally, the more realistic case of a 
Kramer-type compliant surface is investigated. 

To facilitate a comparison between the results of the present work and that of B-S 
& S the equivalents of their principal variables in the present notation are given in 
table 1. 

In figure 4 non-dimensional wavenumber is plotted against phase speed and group 
velocity for two values of C i .  The l/CA vs. Cr curves are obtained by evaluating 
(2.8) when damping is absent and (2.9) in the cases with damping. The group velocity 
was obtained by applying (2.19) to (2.8) or (2.9). (The non-dimensional group 
velocity is defined by Eg = cg/Uoo. )  The results for Zr without damping in figure 4(a) 
are in exact agreement with those presented in figure 9 of B-S & S. This is only to be 
expected for curves EDF and FH in figure 4(a), however, since these curves 
correspond to neutral stability. In the absence of damping only the branch FG 
corresponds to an unstable wave. 

t The highly apt terms, absolute and convective instability, were borrowed from plasma physics. 
$ Atkins (1982) has incorporated damping in his treatment of the thin plate using the techniques 

of B-S BE S. 
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Brazier-Smith 
& Scott (1984) Present work 

K '/'A 

a F r /  (cA ('2)') 
U 1/(C$ 

TABLE 1.  Conversion of variables 
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CA 
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FIQURE 4. Variation of non-dimensional phase and group velocities with non-dimensional wave- 
number for a plate with C; = Cg = 0; (a) = 400, ( b )  100. -, E r ;  ---, Cp: c; = 0; - - - - - - -  ' B  E : 
c; = 0.01. 
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Range of 
wavenumbers 
in figure 4(a )  Brazier-Smith & Scott (1984) Present methods 

Above point D An outgoing wave upstream. An upstream-travelling wave. 

Results based on phase speed 

An outgoing wave downstream. 
Both neutrally stable. 

Two waves upstream, one 

Two outgoing waves downstream. 
All neutrally stable. 

Upstream - as for region AD. 
Downstream - one outgoing 
wave of exponentially growing amplitude. 
amplitude. 

TABLE 2. Comparison of results. In the second column the terms upstream/downstream are used 
as abbreviations for upstream/downstream of the initial disturbance. 

A downstream-travelling wave. 
Both neutrally stable. 

Two downstream-travelling waves. 
Both neutrally stable. 

Between A and D 
inaoming and one outgoing. 

Between A and F 1 As immediately above. 
Between F and G One downstream-travelling wave 

of exponentidly growing 

Turning to the curves for group velocity, i t  will be noted that for non-dimensional 
wavenumbers lying between A and D in figure 4 ( a )  the group velocity is negative 
while the phase speed is positive. B-S & S referred to this as a region of anomalous 
propagation. 

Since the present methods take no account of the location of the initial disturbance, 
there is no direct way of determining whether waves are propagating away from or 
towards the initial input. B-S & S, on the other hand, are able to make such 
distinctions. A comparison of the results of the two approaches is given in table 2. 
B-S & S defined the various regions of propagation with reference to values of their 
variable 52 ; hence the uncertainty in the region between points A and F. 

In their figure 8 B-S & S plot stability boundaries in terms of 52/@ vs. U (in their 
notation). They find that the boundary of the region of anomalous propagation 
converges on the stability boundary (corresponding to point F in figure 4 a ) .  A t  the 
point where the two boundaries meet they found that the instability changes from 
being convective to absolute in nature. The stability boundaries given by B-S & S 
in their figure 8 can be reproduced by the present methods. However, rather than 
plot the results in the form of Q / f i  vs. U ,  the corresponding results obtained with 
the present methods are plotted in figure 5 as non-dimensional wavenumber versus 
CT;. The boundary of the region of anomalous propagation is given by the broken line. 
For CT; < (CT;), this region extends from D to F (in figure 4) without interruption. 
(CT;), % 182, corresponding to U = 0.074, which agrees exactly with B-S & S’s critical 
value U, marking the onset of absolute instability. Thus, the present method can 
predict U ,  but, without the work of B-S & S, there would be no way of knowing the 
significance of (Cz) ,  or U,, since the results displayed in figure 4 ( b )  for Cg < (CT;), 
(i.e. U > U,) give no indication that the instability has changed in nature. 

The effects of damping will now be considered. The instability boundary now moves 
from F to D in figure 4 ( a ) .  The slower of the two downstream-travelling waves is 
destabilized by damping as also shown in $92.1 and 2.2. Now, as one can see from 
table 2, this wave corresponds either to an incoming wave upstream of the initial 
impulse input or an outgoing wave travelling downstream. Atkins (1982), using the 
methods of B-S & S, has shown that it is, in fact, the upstream incoming wave that 
is destabilized by damping. 
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FIGURE 5. Stability boundaries for a plate with C$ = C z  = 0 and no damping. -, Class-C 

flutter; ---, divergence; ----, cg = 0 ;  -------,  c, = U ,  (class-B TWF). 

Actually, it is very misleading to refer to this destabilized wave as ‘incoming’. It 
may appear to be incoming in terms of phase speed, but when group velocity_is 
considered (see dotted line in figure 4) it  is clear that if the development of a waveform 
were followed it would be dominated by the absolute instability occurring at  A in 
figure 4 (a). Any initial disturbance containing wavenumbers in the vicinity of point 
A would tend to spread both upstream and downstream and would grow exponentially 
with time. Thus the upper portion of the broken line in figure 5 corresponds to 
absolute instability when damping is present. For Cg < ( C g ) ,  the solid line denoting 
the flutter boundary virtually corresponds to the absolute-instability boundary. The 
divergence boundary corresponding to point D in figure 4(a) marks the onset of 
convective instability. Thus, when damping is present one would expect the flow field 
to be dominated completely by an absolute instability at all values of Cg (i.e. at all 
flow speeds if B is fixed). 

The case of the unsupported thin plate has the merits of simplicity but is rather 
pathological since it is unstable at all flow speeds. Accordingly, a more practical 
example of a Kramer-type surface will now be considered. 

The case considered in $2.1 and depicted in figure 2 is used again here as an 
illustrative example. This is partly because it corresponds to the Kramer coating with 
best performance. In figure 6 non-dimensional wavenumber is plotted against 
non-dimensional phase speed and group velocity. Only the real part of C is plotted, 
but reference to figure 2 will show that in the absence of damping only the branch 
FG corresponds to an instability. With damping present DFGA corresponds to an 
instability. Note that cg x $, for the Class-C instability corresponding to FG in figures 
2 and 6, in contrast with the previous example depicted in figure 4 where cg x c,. 
Thus it appears that the present example is loosely analogous to gravity waves on 
the surface of deep water whereas the previous example corresponds more to shallow 
gravity waves. 

It can be seen from figure 6 that the group velocity is zero at points S, R, Q and 
P when damping is present. Only the point P corresponds to an absolute instability, 
however. This is because the Eg curves passing through R and Q correspond to the 
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FIGURE 6. Variation of non-dimensional phase and group velocities with non-dimensional wave- 
number for Kramer’s best coating. Cz  = 0.109, C z  = 0.327, C; = 0. Key as in figure 4. cg is the 
same with and without damping where the dotted curve is omitted. 
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FIGURE 7. Stability boundaries for Kramer’s compliant coatings. Cz/CY, = 3.0. -, class-C 
flutter; ---, divergence; ---, cg = 0 ;  -------, c, = U, (class-B TWF). 

Class-B wave that is stabilized by damping, i.e. to branch FH of the 4 curve. Likewise 
S is located within the wavenumber range below the divergence point D where both 
waves are Class B, i.e. stabilized by damping. 

The stability boundaries for the Kramer coatings are depicted in figure 7 in the 
form of non-dimensional wavenumber plotted against C z .  The cg = 0 curve shown 
corresponds to the Class-A wave ; the corresponding Class-B curves are omitted in 
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the interest of clarity. The cg = 0 curve corresponding to point P of figure 6 is virtually 
indistinguishable from the upper portion of the flutter boundary when C z  < (C& 

It can be concluded from figure 7 that as soon as the divergence speed is reached 
(corresponding to ( C z ) ,  in figure 7)  absolute instability sets in. Thus the Class-A 
instability corresponding to  DF in figures 2 ,3  and 6 is not a convective travelling-wave 
instability but an absolute instability which truly grows with time and which will 
alter the flow field profoundly. So the term static divergence would not appear 
inappropriate after all. At this point i t  may well appear that  if PIS1 occurs it is 
inevitably an absolute instability. This is not so; as, indeed, the results given in I 
testify. It will be shown in $3.1 that when boundary-layer effects are taken into 
account the Class-B wave is destabilized, leading to a conventional convective 
travelling-wave instability ; the stability boundaries for this instability are given by 
the dotted curves in figures 5 and 7. 

3. The effects of irreversible processes on stability 

3.1. Irreversible energ?/ transfer due to the boundary layer 
The shear flow in the boundary layer gives rise to a fluctuating pressure component 
which is out of phase with the surface motion. This leads to an irreversible transfer 
of energy from the main stream to the compliant surface - in effect the boundary 
layer functions as ‘negative damping’. Thus, the fast Class-B TWF instability is 
destabilized by this process and the slow Class-A wave stabilized. 

The existence and role of the out-of-phase pressure component appears to  have been 
first explained theoretically for water waves by Miles (1957, 1959a, b, 1962). His 
concepts were applied to compliant surfaces by Benjamin (1959, 1963). Benjamin 
(1963) derived a fairly simple expression for the pressure perturbation 6pe which takes 
into account the effects of the shear flow in a thin laminar boundary layer. This 
extremely useful result was obtained by means of an essentially inviscid theory, and 

where cpr = 1 +O(a) 

and 
U cpi = - a 7 C ( U , - c C , ) 2 ~ + O ( a 2 ) .  U 2  

The suffix c indicates that the derivatives are to be evaluated at y = y c ,  where c, = U .  
As long as CPi is greater than zero there is, in effect, ‘negative’ damping which 

stabilizes the Class-A and destabilizes the Class-B waves according to the energy 
analysis presented in $2.2. Cpi/(aS*), where 6* is boundary-layer displacement 
thickness, is plotted against the non-dimensional phase speed Cr in figure 8.  (These 
results agree with those plotted in figure 2 of Benjamin (1963) when multiplied by 
(1 -C,)z//c,). It can be seen from figure 8 that CPi is positive when E ,  lies between 0 
and 1.0; it  is zero for all other values of E r .  Accordingly it may be inferred that the 
Class-B wave is destabilized when C, falls to 1 .O and that the Class-A wave is stabilized 
from C, = 0 upwards, i.e. a t  the so-called divergence stability boundary. The stability 
boundary for the Class-B TWF, corresponding to  E ,  = 1 ,  is marked by the letter T 
in figures 2, 3, 4 and 6 and shown t)y the dotted lines in figures 5 and 7. It is purely 
coincidental that  the critical speeds corresponding to divergence (D) and Class-B 
TWF (T) are so close in figure 3 ; and that the points T and F are so near each other 
in figure 4. 
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FIQURE 8. The variation of the dimensionless parameter, C,,/aS*, with dimensionless phase 
speed for a laminar boundary layer in zero pressure gradient. 

If (3.1) is used to evaluate Sp, in (2.2), (2 .5)  is replaced by 

= 0. - 
8-C;  + CA( 1 - C)Z- ic,, C,( 1 - C)2 + 

pm ba2 UZ, w 

For the time being Sp, will be assumed to be equivalently zero. For small values 
of CPi, i.e. small values of a&*, a straightforward small-perturbation analysis of (3 .2)  
can be carried out. The zeroth-order solutions to (3 .2) ,  corresponding to CPi = 0, are 
given by (2 .8) .  The small change in C due to the presence of a thin boundary layer 
is then given by - 

-iCp,(l-C)z A-C = 
2( 1 - C) c, - 2E’ (3.3) 

where the symbol C on the right-hand side of (3.3) is used for the zeroth-order solutions 
given by (2 .8) .  

Provided that U ,  < U,, -C as given by (2.8) is wholly real and the right-hand side 
of (3.3) wholly imaginary. Thus it can be seen from (3.3) that instability, which 
corresponds to ACi > 0, will ensue when (1 -C) CA --C < 0. For Class-A waves it is 
easily shown, using (2 .8) ,  that (l-E)CA-C > 0 when U ,  < U,, showing that the 
‘negative-damping’ effect due to the boundary layer is stabilizing. On the other hand, 
for Class-B waves (1 -C) CA --C < 0, implying that the ‘negative damping ’ is 
destabilizing. Thus, as expected, the small-perturbation analysis confirms the 
conclusions based on the energy analysis. 

It is a relatively simple matter to fit cubic splines to the curve of CPi/(aG*) vs. Cr 
given in figure 8 and to solve (3.2) numerically. In  this way the results shown in figure 
9 were obtained. The parameters for these results correspond to those for figure 3 
with S* = 1 mm. The results of figure 9 show how the inclusion of the boundary-layer 
term in (3.2) affects the behaviour of the Class-A and -B waves. Note that, in addition 
to the effects discussed above, the presence of the boundary layer seems to suppress 
the coalescence of the Class-A and B waves so that the Class-C flutter instability does 
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FIGURE 9. Non-dimensional complex wave speed vs. non-dimensional free-stream velocity for a 
non-dissipative compliant surface without a fluid substrate. C,  = 1.0, a&* = 0.54. (a) Class-A 
instability; (b)  class-B instability. r denotes c,/co and i denotes cI/co. ---, results for potential flow 
from ( 2 . Q  -, results with boundary layer present obtained by numerical solution of (3.2). 

not occur. It can be seen from figure 9 (b) that beyond U,/c ,  = 1 .O, ci grows steadily 
and that it would not be possible to discern any qualitative change in behaviour when 
Ur/c, is reached. So, effectively, boundary-layer effects ensure that Class-B TWF will 
occur rather than the Class-C instability. 

The results shown in figure 9 ( b )  suggest that TWF sets in at U ,  = c,. This simple 
result can be readily obtained from (2.8). Since the stability boundary for TWF 
corresponds to c = U,, this value may be substituted into (2.8) (with the plus sign 
taken on the right-hand side) whence a simple rearrangement gives the result 

u, = c, (3.4) 

at the stability boundary for TWF. 

the solution of which gives 
If ( 2 . h )  is substituted for c, in (3.4) a quadratic equation for a2 may be derived, 

(3.5) 
bp, UZ, - T f { (bp ,  UZ, - T)2 - 4BKE)f 

a 2  = 
2B 

Thus (3.5) gives two positive values of a, a, and a2 say, for the stability boundaries 
of the TWF. To obtain the neutral curves in the same form as those in I it is necessary 
to calculate = Z,,, a*, i.e. Zl,2 v, Re/ U,, where v, is the kinematic viscosity of 
the main-stream fluid and Re is the Reynolds number based on S*. In this way the 
neutral curves presented in figure 10 were obtained. Note that there is good agreement 
between the curves obtained by the present simple theory, i.e. from (3.5), and those 
given in I which were obtained by integrating the Orr-Sommerfeld equation 
numerically. In  fact, the present simple theory was required to provide the initial 
guesses for the eigenvalue search scheme used in I. But it is far more troublesome 
to compute the TWF than the TSI mode. This is because neutral stability occurs at, 
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FIGURE 10. Neutral curves for Kramer coating with elastic modulus of 0.5 N/mmz: -, without 
fluid substrate; ---, inviscid fluid substrate of depth 1 mm and p,/p, = 0.946. 0, x , denote the 
corresponding results obtained from numerical integration of the Orr-Sommerfeld equation and 
given in I. 

or near, C = 1 .  Accordingly, the corresponding eigenvalues are very close to the 
continuous spectrum and this gives rise to serious computational difficulties. For 
example, Gaster & Willis (1984) have developed an extremely rapid and convenient 
method for computing eigenvalues for compliant surfaces which is excellent for the 
TSI mode but which fails if i5 is greater than about 0.9. In  fact, there appears to be 
no method currently available that can reliably compute eigenvalues close to E = 1. 
Consequently, the simple inviscid theory presented above is an important technique 
for investigating the TWF mode. 

Probably the most important results of the present theory are simple formulae for 
the critical speed and wavenumber. It follows from (3.4) that these formulae can be 
readily obtained by determining the minimum value of co and the corresponding value 
of a. Setting to zero the derivative with respect to a of the right-hand side of (2.6a) 
gives for the critical wave-number 

a c ~  = (K, /B)f .  (3.6) 

Substitution of (3.6) for a in (2.6a) gives the minimum value of co, and hence from 
(3.4) the critical speed is given by 

Equations (3.6) and (3.7) were first obtained by Carpenter (1984b). 
Note that according to (3.6) the critical wavenumber for a tensioned-membrane 

surface (i.e. B = 0, T + 0) is infinite. In  practice, of course, the flexural rigidity of 
such surfaces will be small rather than zero and must be taken into account to obtain 
a realistic estimate of aCB. Furthermore, it would clearly be impossible to investigate 
the TWF instability by integrating the Orr-Sommerfeld equation numerically if it 
is assumed that B = 0. 
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The simple results (3.4)-(3.7) only apply to  compliant surfaces in the absence of 
a fluid substrate and damping. When these additional effects are included (3.2), with 
the appropriate expression for 6ps/w, must be solved numerically for C. This will be 
briefly discussed in $3.2. The case of an inviscid fluid substrate can be easily dealt 
with by substituting (3.9) (see $3.2) for 6ps/w in (3.2) and proceeding in an almost 
identical fashion to that above. With an inviscid fluid substrate the compliant surface 
remains non-dissipative and the effect is virtually the same as using a less stiff surface 
without a fluid substrate, as can be seen from the results plotted in figure 10. 

It is well known that the solution (2.8) for a potential flow over a non-dissipative 
compliant surface gives the wrong stability boundary in the limit as damping tends 
to zero. Consequently, u d  (given by (2.13)) is generally regarded as the true critical 
speed rather than U, (given by (2.14)). The analysis given above makes it clear that 
the solution (2.8) alsogives the wrong stability boundary in the limit as boundary-layer 
thickness tends to  zero. Thus yet another critical speed U,, (given by (3.7)) is 
obtained. Depending on the properties of the fluid and compliant surface, either U,  
or U,, could take the lower value. It is important to note, however, that  the 
corresponding instabilities are quite different from one another. 

It is also important to  note that although the two types of instability both 
correspond to eigenmodest of the coupled Orr-Sommerfeld/compliant-surface equa- 
tions, they are in fact quite different from one another. TWF is a convective 
instability, so that (2.1) is a reasonably appropriate representation. Divergence, on 
the other hand, is an absolute instability, so that (2.1) is probably not an appropriate 
representation. Certainly, the standing-wave representat'ion adopted in $4 leads to 
different conclusions with regard to the effect of damping. The critical speed U,, for 
TWF can be raised by increased damping - in fact the TWF may be completely 
eliminated in this way - but the critical speed of divergence ud appears to be 
unaffected by damping. Transition postponement would not necessarily be ruled out 
by the existence of TWF but the occurrence of divergence would almost certainly 
make it unattainable. 

3.2. The effects of viscous and viscoelastic damping 
For real compliant coatings like those of Kramer (1960) irreversible energy losses 
would occur in two distinct ways. First, losses would occur due to viscous effects in 
the substrate fluid. Secondly, energy would be dissipated owing to  the internal 
friction of the solid part of the coating which would be made of a viscoelastic 
elastomeric material. As a convenient shorthand these two effects are referred to here 
as viscous and viscoelastic damping respectively. 

The effects of viscous damping are embodied in the expression for the substrate 
pressure, 6ps. In I (see equation (3.22)) it was shown that for a viscous fluid substrate 

where H is the depth of the substrate, p2 = a2-iuc/us and ps and us are the density 
and kinematic viscosity respectively of the substrate fluid. The notation in (3.8) has 
been changed somewhat from I to fit in with present usage. Two special limiting cases 
can be derived from (3.8). 

t Owing to the close proximity of these eigenmodes to branches of the continuous spectrum, very 
considerable computational difficulties can be encountered, especially for divergence. 
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I n  the limit as v,+O (3.8) reduces to  

(3.9) 

This is the appropriate form for an inviscid fluid substrate, while in the limit H-tO 
for fixed v,, (3.8) reduces to 

(3.10) 

where p, is the dynamic viscosity of the substrate fluid. 
The effects of viscoelastic damping can be taken into account by introducing a 

complex elastic modulus as explained in I. For present purposes this implies that  the 
flexural rigidity and spring stiffness be multiplied by the complex factor (1 - iq) where 
q is the viscoelastic loss factor. In  general the loss factor will be different for the 
flexural rigidity and spring stiffness; but where the same material is used throughout, 
as in the Kramer coatings, the same value of q may be used in each case. When a 
single value of 7 is used, viscoelastic damping may be taken into account by replacing 
ci by ci( 1 - ia). For real elastomers q varies with frequency but for simplicity constant 
values will be assumed in what follows. 

With (3.8) substituted for Sp,/w and with E i  replaced by Ci( 1 - iq), the governing 
equation (3.2) becomes an even more complicated function of C. It is relatively easy 
to solve (3.2) numerically, however, and this is how the results presented below were 
obtained. 

I n  figure 11 the effects of viscous damping on the behaviour of the Class-A and 
Class-B TWF instabilities are illustrated. These results correspond to  Kramer’s best 
coating with a = ad and S* = 1 mm (i.e. the same as figure 9) and with v, /v ,  = 200. 
Asexpected, the viscous damping has a considerable destabilizing effect on the Class-A 
instability but almost doubles the critical speed of the Class-B TWF. 

The stabilizing effect of both kinds of damping on the Class-B TWF is also 
illustrated in figure 12, where the maximum growth rate, Eic,/c,, {where Z = ad*} is 
plotted against v, /v ,  and against 7. Note that for U ,  = 15 m/s the results of the 
present inviscid theory are in close agreement with the results obtained in I by means 
of the numerical integration of the Orr-Sommerfeld equation. For U ,  = 18 m/s the 
inviscid theory considerably underestimates the maximum growth rates. This lack 
of agreement is probably explained by the much larger values of ci at the higher 
speed. t 

For the Class-A instability the effects of viscous damping and of the ‘negative 
damping’ due to  the boundary layer act in opposition. The latter effect becomes 
stronger as the boundary-layer thickness increases. I n  this way the neutral curves 
depicted in figure 13 can be explained. For slightly viscous substrates, v, /v ,  < 10 say, 
the unstable region in (a, Re)-space is very small. As v , / v ,  rises the unstable region 
grows until i t  reaches its fullest extent a t  vs/ve w 100. Any further rise in v,/v,  would 
leave the stability boundaries unchanged. In  theory, the neutral curves shown in 
figure 13 could be found by integrating numerically the Om-Sommerfeld equation. 
But, in practice, solutions in the region of c, = 0 are very difficult to obtain. Again, 
in theory, these Class-A instabilities take the form of travelling waves. But i t  was 
shown in 52.3 that  they are absolute instabilities, having group velocity equal to zero, 
so it probably is not sensible to  investigate these instabilities as individual 
eigenmodes. 

t Modal interactions between TWF and TSI also occur at 18 m/s. 

8 Y L M  170 
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FIGURE 11.  Effect of a viscous fluid substrate on travelling-wave flutter for a Kramer coating with 
elastic modulus of 0.5 N/mm*, pJp, = 0.946 and as* = 0.54. -, e,/c,; ----, ci/c,. 1 denotes 
vJv, = 0 and 2 v,/v,  = 200. indicates top operational speed during Kramer’s tests. (a)  
Class A, ( b )  Class B. 
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FIGURE 12. Maximum instability growth rate for Class-B TWF plotted against damping factor for 
Kramer coating with an elastic modulus of 0.5 N/mma, p,/p, = 0.946 and H = 1 mm. For (a) 
u,/u, = 0 and for (b) 7 = 0. -, U, = 18 m/s; ------, 15 m/s: numerical solutions of (3.2). x , 
18 m/s; 0, 15 m/s: numerical solutions of Orr-Sommerfeld equation given in I. 
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FIGURE 13. Neutral curves for Clam-A travelling-wave flutter with various levels of viscous 
damping. The mechanical properties of the compliant surface are as for figure 12 (b). 

0 

Some further results, illustrating the effects of viscous damping on the Class-A 
instability, are presented in Carpenter & Garrad (1982). There it is shown that there 
is a level of viscous damping which has the maximum destabilizing effect. For the 
best Kramer coating a value of v, /v ,  % 400 yielded the highest instability growth 
rates. It was also shown in Carpenter & Garrad (1982) that the effects of substrate 
depth and viscosity are closely inter-related. In fact, as suggested by (3.10), the two 
effects can be combined by defining a modified viscosity of the form 

(3.11) 

8-2 
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This implies that  t w o  coatings with the same value of p, would have very similar 
levels of viscous damping. This has been established by Carpenter & Garrad (1982) 
for the Class-A instability, but presumably would also hold for the TSI and Class-B 
TWF. 

It would also be possible to investigate the effects of viscoelastic damping on the 
Class-A instability. It is important to note, however, that the sign of the imaginary 
part of the elastic modulus depends on the sign of ac, - as demonstrated in I .  
Therefore, when considering the upstream-propagating wave which occurs a t  free- 
stream speeds below U,, the factor (l-iq) must be replaced by ( l+iq) .  Real 
elastomers tend to exhibit low 1evt:ls of damping at  low frequencies. Consequently, 
in practice q will be very small in the vicinity of the stability boundary for Class-A 
instabilities where frequency (i.e. zc,) is zero. Thus it is thought that  viscoelastic 
damping will have little effect on the Class-A instabilities. 

4. Static divergence 
A fairly complete picture of the flow-induced instabilities of a compliant surface 

has apparently emerged from the theory described in the preceding sections. Focusing 
on the Class-A instability, one finds that it takes the form of a slow downstream- 
travelling wave and that damping is essential for its existence. In  fact, it would appear 
from figure 13 that a level of damping equivalent to a viscous fluid substrate about 
ten times more viscous than water would be required for the unstable region in 
(5, Re)-space to reach a significant size. On the other hand, i t  was shown in 52.3 that 
the Class-A instability is absolute and, consequently, it should have a far more 
profound effect on the flow than thc purely convective Class-B TWF. 

The conclusions reached above concerning the essential role played by the damping 
and the travelling-wave nature of the Class-A instability run counter to known results 
for the hydroelastic stability of flexible surfaces having finite length (see Dugundji, 
Dowell 6 Perkin 1963; Weaver & Unny 1970; Dowell 1975; Kornecki, Dowell & 
O’Brien 1976; and Garrad & Carpenter 1982b). For finite flexible surfaces both static 
divergence and standing-wave flutter instabilities can occur in general. Moreover, 
damping is not necessary for either type of instability. In  view of these results one 
is prompted to  speculate on whether the results obtained using the finite-length 
theory in the limit as aL+ 00 (where L is the length of the compliant surface) will 
agree with those obtained using the theory in the preceding sections. This point is 
investigated in the next paragraph. 

For a compliant surface of finite length L an instability of general standing-wave 
form is assumed, i.e. 00 

w(s,t) = exp(iwt) E L A ,  sin 
n=l 

where w = w, + iwi is the complex frequency. 
In  Garrad & Carpenter (1982b) the main-stream pressure was obtained by means 

of thin-aerofoil theory whereby the main-stream flow was modelled by a source 
distribution. Galerkin’s method was then followed to obtain a matrix equation for 
the coefficients A ,  which, in the absence of a fluid substrate, takes the form 

(4.2) 
where the matrix coefficients are given by : 

B,, A ,  = 0 (m, n = 1, .  .. , oo), 

B,, = {m4~’,+~,+i~,Q-522}S,,- (CMM/z) ~ 4 i Q F r ~ , , m + 2 n F r 2 1 , , m - ~ ~ 2 1 , , , }  
(4.3) 
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The non-dimensional coefficients are defined as follows : 

The non-dimensional complex frequency and mainstream velocity are defined 

The latter is in the form of a Froude number, hence the not,ation. I,,,, I,,, and 13,, 
are integrals which are defined as 

1 

13,, = - 2 [{I + ( -  J In (5) sin (mnE) d5-l,nm]f 
0 nn 

The limit aL+ 00 is equivalent to n and m+ 00. It can be shown? that as n and 
m tend to infinity I,,, = 13,, = 0 and I,,, = in: if n = m, I,,, = Ian,  = 0 if n 9 m, 
I,,, = l / ( n - m )  if n is even and m odd or vice versa, and I,,, = 0 if n and m are 
either both odd or both even. 

The characteristic equation for determining the non-dimensional complex frequency 
l2 is obtained from (4.2) by setting the determinant of B,, equal to zero, i.e. 

det (I?,,) = 0. (4.7) 

B,, = 0. (4.8) 

If a single-mode disturbance is considered (4.7) reduces to 

Substitution in (4.3) of the values assumed by I,,, etc. in the limit as n+m and 
taking cD = 0 gives the following form for (4.8) : 

n -  
n4cB+CK-Q2--CM n: Fr2 = 0. (4.9) 

Since the other three terms in (4.9) are real 52, must also be real, so 52 must either 
be real or purely imaginary. Thus, only a divergence-type instability is possible for 
a single-mode disturbance. The critical value of velocity (or, equivalently, Fr) is 
obtained from (4.9) by setting 52 = 0, giving 

The minimum value of Frd corresponds to a mode number of 

(4.10) 

(4.11) 

Equations (4.10) and (4.11) were previously derived by Garrad &, Carpenter (19823) 
and have recently been generalized to oblique waveforms on orthotropic panels by 

t The treatment of the singularities involved in I,,, is described in Garrad & Carpenter (19824. 
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Carpenter (1984~).  The mode number n, of the most unstable mode given by (4.11) 
agrees exactly with (2.12) when m / L  is identified with a. The critical velocity 
obtained by substituting (4.1 1 )  into (4.10) also agrees exactly with the result (2.13) 
of the simpler inhite-length theory. 

As shown above, the theory for standing waveforms of finite length gives the same 
results for the critical wavelength and velocity in the limit as n+cc as the 
infinite-length theory developed in $52 and 3. But, whereas a substantial level of 
damping is required to produce the Class-A TWF instability, the divergence 
instability occurs in the absence of damping. In  fact, Carpenter & Garrad (1982) have 
shown that the introduction of damping reduces the growth rate of divergence. 

How should the divergence instability be classified according to the energy analysis 
described in 52.2Z The fact that its occurrence does not require any form of 
irreversible energy transfer suggests that it is a Class-C instability. A closer inspection 
reveals that matters are not quite that straightforward. For free-stream speeds below 
Ud there are two neutrally stable standing waves of the form 

w = wo e*iWrt sin (ax). (4.12) 

A straightforward analysis shows t,hat for both these waves the activation energy is 
positive, so the waves are Class B. This corresponds exactly to the travelling-wave 
analysis described in $2 in that for U ,  < Ud the travelling waves corresponding to 
AD and BF in figure 3 were also found to be Class B. 

The classification of the standing wave for U ,  > U, depends on what is assumed 
about the final state of the wave. After the divergence speed has been exceeded the 
wave changes form to 

w = wo e+ sin (ax), (4.13) 

so if one assumes a non-growing final state, as in $2.2, then this implies that w, = 0 
and it can be readily shown that EA = 0, i.e. the wave is Class C. However, it is 
somewhat illogical to assume a non-growing final state when the stability analysis 
indicates that or > 0 when U ,  > Ud. Accordingly, the energy analysis was repeated 
assuming a growing final state and the rate of change of activation energy with time 

(4.14) 

Since w, is small dEA/dt is clearly small, but equally clearly it is negative, indicating 
a Class-A instability. This, of course, corresponds to the situation found with the 
travelling-wave analysis when a non-growing final state is assumed. 

The situation now appears rather paradoxical. On the one hand the stability 
analysis shows quite clearly that damping is not required to produce single-mode 
divergence. But on the other hand the energy analysis appears to show that the 
divergence instability is a Class-A wave which implies that damping is required for 
the instability to occur. A completely satisfactory resolution of this apparent paradox 
has eluded us thus far, but a possible explanation is set out below. 

The fact that dEA/dt is negative for a divergence instability could be interpreted 
as meaning that a small surplus of energy is being generated. The question then 
becomes: What happens to this energy surplus? When considering this question i t  
should be noted that for the Galerkin-type analysis of the stability of finite compliant 
surfaces it is only an approximation to consider the modes individually. Strictly an 
infinite number of modes should be considered simultaneously. Suppose that the mode 
considered in the single-mode analysis is the most unstable, i.e. the one with the lowest 
critical velocity. As soon as U ,  exceeds this critical velocity the possibility exists of 
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adjacent modes being excited by energy transfer from the most unstable mode. If 
this happens one would expect the critical velocity of the adjacent modes to be 
slightly lower than predicted by the single-mode analysis. In fact, this lowering of 
the critical velocity was found in the triple-mode analysis presented by Garrad & 
Carpenter (1982b). Since the energy transfer to adjacent modes was ignored in the 
energy analysis given above, it provides a possible explanation to the question posed 
above concerning the apparent energy surplus. 

When multiple-mode, rather than single-mode, standing-wave disturbances are 
considered it can be shown that two modes may coalesce, thereby giving rise to a 
conventional Class-C instability. This type of instability is known as standing-wave 
flutter and takes the form of an oscillating standing wave. Let us consider a waveform 
(4.1) consisting of an indefinite number of modes clustered about the most unstable 
mode of mode-number n,. Since n, 9 1, it can be assumed to a good approximation 
that 

Bnc-l,nc-l = Bnc,nc 
provided that 1 is O(1). When m = n, it follows from (4.3) and the asymptotic forms 
for I,,, etc., that 

B* when n - m is odd, 

when n - m is even, 

1 
n-m 

B,, = -- 

= o  
where B* = 4i EM QFrlx,  giving 

= 0 (4.15) 

For simplicity suffix n is used for suffix n, in (4.15). For odd numbers of modes it 
appears that (4.15) can be expanded and subsequently factorized to give equations 
of forms equivalent to 

B,,(B2,, + AB*2) = 0, (4.16) 

where h = 2 for three modes and y for five modes. 
Thus one factor of (4.16) leads again to (4.8), and a single-mode divergence with 

the same critical speed as before is obtained. The other factor leads to a quadratic 
in Q2. The condition for Q2 = 0 leads again to (4.8) but the condition for complex 
Q2 (implying a Class-C instability) leads to a critical velocity given by 

(4.17) 

For Kramer’s coatings (4.17) gives the following critical velocities for standing-wave 
flutter: 

U, = 3.3Ud (3 modes), 

U, = 1.9ud (5 modes). 

(4.18) 
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I n  practice, a small disturbance will contain a large number of modes. Consequently, 
for application to real surfaces it would be unwise to place too much reliance on the 
results given in (4.18). It does, however, appear that  the critical velocity for flutter 
is much higher than that for divergence. Accordingly, one would not expect to observe 
standing-wave flutter on Kramer-type coatings. 

A certain amount of experimental work has been carried out on the flow-induced 
surface instabilities, mostly divergent in character, occurring on a variety of 
compliant surfaces. This work is briefly reviewed below. 

Wrinkles and pulsations of Kramer coatings were reported by Puryear (1962), 
Ritter & Messum (1964), Ritter & l’orteous (1965) and Nisewanger (1964). Puryear 
presented a photograph showing the wrinkles and gave a value for the critical 
velocity. Garrad & Carpenter (1982b) showed that the results of the present theory 
for critical wavelength and speed are in good agreement with the empirical observations 
of Puryear. Similar types of hydroelastic instability have also been observed on 
dolphins, notably by Essapian (1955). Some scientists, e.g. Hertel (1963), have 
proposed that this skin folding is actively controlled by the dolphin in order to achieve 
favourable hydrodynamic effects. However, in view of the fact that Aleev (1973,1977) 
has observed a very similar phenomenon on young female human subjects, it  would 
appear fairly certainly to be a divergence type of hydroelastic instability. 

It appears that no detailed experimental investigation of the flow-induced surface 
instabilities on Kramer-type surfaces has been undertaken. Some very careful and 
detailed studies have been carried out  on related surfaces though; for example 
Dugundji et al. (1963), MacMichael, Klebanoff & Mease (1980), Hansen & Hunston 
(1974, 1976, 1983), Hanscn et al. (198Oa, b ) ,  Gad-el-Hak, Rlackwelder & Riley (1984) 
and Gad-el-Hak (1985, 1 9 8 6 ~ ) .  Dugundji et al. studied the aeroelastic behaviour 
of an aluminium panel supported on springs. They observed mild divergence-type 
instability (n, x 7-1 1 ) which had travelling-wave flutter superimposed on it when 
the flow speed reached a sufficiently high level. MacMichael et al. (1980) made 
detailed measurements of the response of a tensioned-membrane-type compliant 
surface to turbulent air flow. They observed both Class-B travelling-wave disturbances 
and static divergence. Homogeneous, isotropic compliant surfaces in the form of 
plastisol slabs have been fairly extensively studied by Hansen & Hunston (1974, 1976, 
1983) and Hansen et al. (1980a, b ) .  Very recently Gad-el-Hak et al. (1984) have 
presented some impressive results of a detailed investigation of the response of such 
surfaces to a turbulent water flow. They observed what they termed ‘static 
divergence’ but, in fact, these instabilities were slowly travelling waves with phase 
speed increasing with flow speed above the critical speed, typically c, x 0.0517,. 
These instabilities only appeared when the boundary layer was turbulent. Hansen 
& Hunston (1976, 1983) have observcd similar hydroelastic instabilities in compliant 
coatings on spinning disks. I n  this case, however, the instabilities were observed in 
both the laminar and turbulent regimes. The propagation speed of the waves was 
negligible in both regimes but the instability had a strikingly different appearance 
in the two regimes. I n  particular, the wavelength was much longer when the flow was 
laminar. Hanscn & Hunston also found that thcir simple theoretical predictions of 
the critical speed for a divergenae-type instability agreed well with the observed 
behaviour in the laminar regime. 

Very recently Gad-el-Hak (1985.1986~) has presented the resultsof anexperimental 
study of the waves generated by turbulent water flow over homogeneous, isotropic 
compliant surfaces made of common, household gelatin. The significance of gelatin 
lies in its extremely low viscoelastic damping. Thus, it is very nearly a truly elastic 
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solid. Gad-el-Hak found that the waves on the gelatin (i.e. elastic) surfaces were quite 
different from those on the plastisol (i.e. viscoelastic) surfaces. The waves on the 
elastic surfaces had phase speeds of between 25 % and 50 yo of the free-stream speed, 
compared with 0.5y0-5% for the viscoelastic surfaces. The waves on the elastic 
surfaces also had smaller wavelength and amplitude as compared with those on the 
viscoelastic surfaces. 

Gad-el-Hak (1985) has also carried out some experiments on silicone-rubber 
surfaces. In  this case, by varying the composition of the silicone rubber it is possible 
to make surfaces with levels of viscoelastic damping that vary from very low to 
moderate. For low-damping surfaces Gad-el-Hak found that the fast (elastic) waves 
were generated. But when the damping exceeded a critical threshold the divergence- 
type, slow (viscoelastic) waves took over. 

These recent results of Gad-el-Hak strongly suggest that damping is essential for 
the generation of a divergence-type instability. There is, however, an alternative 
interpretation of these experimental observations. Fraser & Carpenter (1985) have 
shown that in the absence of damping the critical speeds for TWF and divergence 
for laminar flow over homogeneous, elastic compliant surfaces are given approximately 

(4.19) 

where C, is the velocity of free surface waves on the compliant surface and C ,  and 
C ,  are respectively the propagation speeds of shear and longitudinal waves in the 
solid. When C,/C,  = 0 the above result for U ,  agrees with that derived by Hansen 
& Hunston (1974). For elastomers like plastisol and silicone rubber cT/c, is very 
small and p,/p, x 1 .O so that u d  x 4 3  C ,  whereas C, x O.95CT. Thus it can be seen 
that in the absence of damping TWF always has a lower critical speed than divergence 
for homogeneous, isotropic compliant surfaces. But viscoelastic damping has a 
stabilizing effect on the TWF, so that as the level of damping rises U,, also increases. 
On the other hand the divergence speed is left unchanged by the inclusion of damping. 
Thus, as damping is increased a level will be reached at  which U,, = U ,  and 
divergence will take over from TWF. 

It has been pointed out above that there are substantial differences between the 
results for a divergence-type instability obtained with a travelling-wave analysis and 
those obtained by means of a standing-wave analysis. First there is the question of 
whether the instability manifests itself as a travelling wave or as truly static 
divergence. Experimental evidence indicates that the travelling-wave form of 
divergence occurs on some types of compliant surface in turbulent flow but it is still 
not known whether this form of the instability can occur for laminar flow over a 
Kramer-type compliant surface. If the standing-wave analysis had indicated the 
occurrence of standing-wave flutter rather than divergence then there would be no 
real differences between the forms used in the two theoretical approaches. The 
indications appear to be that in the case of laminar flow the critical speed for 
standing-wave flutter is considerably higher than that for divergence in the case of 
Kramer-type compliant surfaces. However, Garrad & Carpenter (19823) have shown 
that standing-wave flutter will take over from divergence if the mainstream changes 
from laminar to turbulent. Secondly, there is the question that the damping is 
essential for the occurrence of divergence. The travelling-wave analysis clearly 
indicates that damping is essential whereas the standing-wave analysis equally 
clearly indicates that divergence can occur in the absence of damping. 

It cannot be claimed that the differences between the two approaches have been 
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completely satisfactorily explained or resolved in the present paper. Perhaps, though, 
these differences are not so significant in practice as might appear a t  first sight. The 
point is that it has been shown by the travelling-wave analysis that divergence is 
an absolute instability and this is certainly consistent with experimental observation. 
The standing-wave analysis implicitly assumes an absolute instability. For such an 
instability the distinction between travelling and standing waves tends to lose its 
significance. Moreover, such concepts as stability boundaries in (E, Re)-space (see 
figure 13) and instability growth rate are now all but irrelevant. All that matters for 
an absolute instability is whether or not it exists. Even if its growth rate is very small, 
and the unstable wavenumbers are confined to a diagonal line in the (Z, Re)-plot in 
figure 13, the instability will still develop and given time will eventually dominate 
the flow field, thereby destroying any potential transition-delaying characteristic of 
the surface. 

5. Conclusions 
The flow-induced surface instabilities of Kramer-type compliant surfaces have been 

investigated by means of a variety of theoretical approaches. The results should be 
applicable to any compliant surface which consists of a thin elastic plate, with or 
without applied longitudinal tension, supported on a springy elastic foundation, with 
or without a viscous fluid substrate; material damping is also taken into account 
through the viscoelastic properties of the solid constituents of the coating. Four 
possible instability modes have been identified and investigated, namely Tollmien- 
Schlichting instability (see I), (Class B) travelling-wave flutter, static divergence, and 
a combined instability formed by the interaction and coalescence of the Tollmien- 
Schlichting and travelling-wave-flutter instabilities (see I and Carpenter et al. 1983). 
Three additional instability modes have been identified theoretically, namely Class-A 
travelling-wave flutter, Class-C travelling-wave flutter and standing-wave flutter. For 
a variety of reasons, however, these additional instabilities are not considered likely 
to occur in practice. A summary of the main characteristics of the various instabilities 
is given in table 3. 

In table 4 a summary of results is presented for the instabilities on the original 
Kramer (1960) coatings. The top operational speed during Kramer’s tests was 18 m/s, 
so it can be concluded that probably only his softest coating (D) suffered from static 
divergence. This is probably the explanation for its poor performance, its drag being 
virtually the same as for the rigid reference surface at the top speed (see figure 3 of 
I). Coatings C and D should have experienced travelling-wave flutter, but as shown 
in I this instability can be reduced or eliminated by damping (i.e. by the introduction 
of a viscous fluid substrate). It was shown in I that at the top speed of 18 m/s this 
procedure was frustrated because the introduction of damping brought about the 
occurrence of modal interaction between the Tollmien-Schlichting and travelling- 
wave-flutter instabilities. There are grounds,? however, for believing that this 
interaction would be unlikely to occur on the actual Kramer coating. In the absence 
of modal interaction it was shown in I that Coating C had a reasonable performance 
with respect to transition delay. On the other hand, the stiffest coating (B) has a much 
less stabilizing effect on the Tollmien-Schlichting instabilities. Therefore, despite the 
absence of any flow-induced surface instabilities in this case, the transition delay 
achievable with this coating would be much less than for coating C. Hence the drag 

t For example, Kramer’s model was axisymmetric, so there may well have been significant 
three-dimensional effects which have been ignored in the present analysis. 
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Effect of a reduction 
in coating property Effect of an 

increase in 

Instability Class Type bp,  ci bP, damping thickness 
Stiffness Mass Effect of boundary-layer 

TSI A C CVU cv u cv u 
A- A +  A +  A +  
GR - GR + GR + GR + 

Class-A TWF A A CV- cv u cv u cv u 
A (see (2.12)) A U  A +  A- 
GR + GR U GR + GR- 

Class-B TWF B C CV- cv + cv + cv - - A (see (3.6)) A-  A- A +  
GR + GR- GR - GR + 

Divergence C ?  A CV- cv u cv u cv u 
GR + GR - GR U 

Combined c c  Promoted A +  
TSI/TWF by GR + 

TABLE 3. A summary of the main characteristics of the various instabilities. In column 3 C and 
A denote convective and absolute instabilities respectively. In columns 4-7, CV denotes critical 
velocity, A area of instability region in (Z, Re)-plane, GR instability growth rate; U, + , - denote 
no change, increaae and decrease respectively. 

damping 

Coating 
designation Critical velocity Critical wavelength (mm) - 

in Elastic (m/s) 
Kramer modulus Combined 
(19W (E/mmz) TWF Div TWF Div TSI TSI/TWF 

- - B 1.04 22.3 24.6 8.8 11.6 
C 0.52 15.8 17.4 8.8 11.6 20 3 
D 0.40 13.9 15.3 8.8 11.6 

TABLE 4. Summary of results for instabilities on original Kramer (1960) coatings 

- - 

for coating B should be higher than for coating C, as is found in figure 3 of I. Thus 
Kramer’s experimental observations are more or less consistent with the predictions 
of linear hydrodynamic stability theory. As could no doubt have been anticipated, 
however, the theoretical studies have by no means conclusively demonstrated that 
Kramer’s coatings are capable of achieving substantial delays in transition to 
turbulent flow. 
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